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Human trisomy 21 is the most
frequent live-born human aneu-

ploidy and causes a constellation of
disease phenotypes classified as Down
syndrome, which include heart defects,
myeloproliferative disorder, cognitive dis-
abilities and Alzheimer-type neurodegen-
eration. Because these phenotypes are
associated with an extra copy of a human
chromosome, the genetic analysis of
Down syndrome has been a major
challenge. To complement human gen-
etic approaches, mouse models have
been generated and analyzed based on
evolutionary conservation between the
human and mouse genomes. These
efforts have been greatly facilitated by
Cre/loxP-mediated mouse chromosome
engineering, which may result in the
establishment of minimal critical geno-
mic regions and eventually new dosage-
sensitive genes associated with Down
syndrome phenotypes. The success in
genetic analysis of Down syndrome
will further enhance our understanding
of this disorder and lead to better
strategies in developing effective thera-
peutic interventions.

Human trisomy 21, the chromosomal
basis of Down syndrome (DS), is a lead-
ing genetic cause of congenital heart
disease, acute megakaryoblastic leukemia
and developmental cognitive disabilities.
It causes early-onset Alzheimer-type

neurodegeneration in nearly every indi-
vidual with DS. The mechanisms of this
disorder are not well understood. The
prevailing hypothesis suggests triplications
of one or more human chromosome 21
(Hsa21) genes underlie a DS phenotype.1

To identify genomic regions that contain
the critical genes associated with DS
phenotypes, human genetic approaches
have been used to analyze the data of
individuals with segmental trisomies.2-5 To
complement such an effort, the mouse
has been employed as a model organism
based on the evolutionary conservation
between the regions on Hsa21 and three
regions in the mouse genome located on
chromosome 10 (Mmu10), Mmu16 and
Mmu17. Ts65Dn and Ts1Cje models,
the products of random mutagenesis, have
served as the essential platforms in estab-
lishing the importance of mouse mutants
in DS research.6,7 More recently, two
new groups of mouse models have
emerged. The first carries a duplication
of a specific Hsa21 orthologous region on
a mouse chromosome generated by Cre/
loxP-mediated chromosome engineering,
with the advantage that the duplications’
endpoints can be predetermined (Fig. 1).
This group includes Ts1Rhr,8 Dp(16)
1Yey/+,9 Ts1Yah,10 Dp(10)1Yey/+, Dp
(17)1Yey/+11 and Dp(16)2Yey/+12 models
(Fig. 2). The second consists of transchro-
mosomic models, generated to carry
Hsa21 or a fragment of it.13,14 Among
them, Tc1 carries Hsa21 with two small
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deletions (Fig. 2).13 The availability of
these mouse models has significantly
expedited genetic analysis of the major
DS-associated disease phenotypes.

Congenital heart defects are detected
in 40–60% of children with DS.15 DS-
related heart defects were observed in
Ts65Dn, Tc1, Dp(16)1Yey/+ and Dp(10)
1Yey/+;Dp(16)1Yey/+;Dp(17)1Yey/+ mod-
els, but not in Dp(10)1Yey/+ or Dp(17)
1Yey/+ models,9,12,13,16,17 indicating the
causative gene(s) for heart defects is
located in the Hsa21 orthologous region
on Mmu16, but not on Mmu10 or
Mmu17 (Fig. 2). The detection of heart
defects in Dp(16)2Yey/+ models, but not
in the Dp(16)1Yey/Df(16)2Yey model,
suggests that triplication of the Tiam1-
Kcnj6 region is necessary and sufficient to
cause heart defects, which further narrow
down the critical genomic region for heart
defects (Fig. 2). This conclusion is also
supported by the elevated expressions of

genes located within the Tiam1-Kcnj6
region in the pharyngeal arch and heart
of Dp(16)2Yey/+ embryos.12 Since heart
defects were not observed in the Ts1Rhr
model,12,17 we can therefore conclude that
the Tiam1-Cbr1 region contains a causa-
tive gene(s) (Fig. 2).

As many as 10% of children with DS
develop transient myeloproliferative dis-
order, and about 30% of these patients
develop acute megakaryoblastic leukemia
(AMKL), which equates to an approxi-
mately 500-fold increased risk of deve-
loping AMKL.18 It has recently been
determined that nearly all children who
have DS and develop AMKL have
acquired somatic mutations in exon 2 of
the GATA1 gene on the X chromosome,
which leads to the generation of a mutant
protein, GATA1s.19 In mice, the same
mutation in the mouse ortholog Gata1
alone results in hyperproliferation of the
CD41+ progenitor cells of megakaryocytes

in the E12.5 developmental stage, but
the level of progenitor cells drops back
to normal in the later developmental
stage.20 Myeloproliferative disorder,
including megakaryocytosis, was observed
in Ts65Dn and Tc1 mice,21,22 and the
addition of the Gata1 mutation to Tc1
mice did not lead to AMKL.22 On the
other hand, by converting three copies
of Erg to two copies, Ng et al. provided
evidence that triplication of Erg is
required for the myeloproliferative pheno-
type in Ts65Dn mice.23 An unresolved
puzzle is that myeloproliferative disorder
was not detected in the Ts1Cje model
even though it also carried three copies of
Erg24 (Fig. 2).

Human trisomy 21 is the most com-
mon genetic cause for developmental
cognitive disabilities and there is no effec-
tive treatment for this clinical manifesta-
tion at present. Recent analysis of Ts1Rhr
mice indicates that the triplication of this
region led to decreased hippocampal long-
term potentiation (LTP) and impaired
cognitive behaviors.25 Within the dupli-
cated region of the Ts1Rhr model, Dyrk1a
and Kcnj6 are interesting candidates for
these phenotypes.25 However, transgenic
mice harboring a single copy of the BAC
clone carrying the human DYRK1A gene
showed increased hippocampal LTP.26

Introducing a heterozygous null allele of
Kcnj6 into Ts65Dn mice has led to a
decrease in the resting membrane potential
of CA1 pyramidal neurons,27 but the
direct impact of Kcnj6 on hippocampal
LTP remains unknown. The duplications
in Hsa21 orthologous regions on Mmu17
resulted in increased hippocampal
LTP.10,28 Together, these data point to
contributions and genetic interactions of
different genes in the orthologous regions
with regard to hippocampal LTP and
cognitive behaviors. The compound effects
of these and possibly other genes may
have led to decreased hippocampal LTP
and impaired cognitive behaviors in Tc1
and Dp(10)1Yey/+;Dp(16)1Yey/+;Dp(17)
1Yey/+ mice.11,13 Besides the hippocam-
pus, recent studies have also shown defects
in other brain regions in Ts65Dn mice,
e.g., the forebrain, which may have a
significant implication for developmental
cognitive disabilities.29,30 Interestingly,
converting Olig1 and Olig2 back to two

Figure 1. Schematic representation of the strategy to generate deletions and duplications in mouse
ES cells using Cre/loxP-mediated chromosome engineering. To generate these rearrangements,
loxP is targeted to the proximal and distal endpoints of an orthologous region of Hsa21 in the
genome of mouse ES cells. Two different positive selection markers are used to isolate the ES cell
clones carrying the targeted alleles. An expression vector for Cre recombinase is then transfected
into the double-targeted cells to induce recombination. (A) If two targeted loxP sites are located in
cis on the same chromosome homolog, the Cre/loxP-mediated recombination will lead to a
deletion. (B) If two targeted loxP sites are located in trans on two homologs of the same
chromosome, the recombination will lead to a duplication and a deletion. Recombination efficiency
can be used to assist in identifying a cis or trans event because a cis recombination is much more
efficient than a trans event. The ES cells carrying the desired chromosomal rearrangements are
analyzed by various genotyping procedures, such as DNA gel blot analysis, fluorescence in situ
hybridization and/or microarray-based comparative genomic hybridization. Upon confirmation,
these cells are injected into wild-type mouse blastocysts to generate chimeric males, and mutant
mice carrying a desired duplication or deletion can be derived by crossing the chimeras with wild-
type mice. Arrow head, loxP site; Df, deletion; Dp, duplication.
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copies in Ts65Dn mice rescued some
major neuronal phenotypes observed in
the forebrain of the mutant mice.29

The brains of individuals with DS over
the age of 40 show the neuropathological
alterations of Alzheimer disease: amyloid
plaques, neurofibrillary tangles, synapse
loss and cellular atrophy,31-33 including
degeneration of basal forebrain choliner-
gic neurons (BFCNs).34 Although the
amyloid plaques and neurofibrillary tan-
gles of Alzheimer disease have not been
replicated in the current mouse models
of DS,11,13,35 age-related BFCN degenera-
tion has consistently been observed in
Ts65Dn mice,36-38 which is associated with
intra-axonal failure in retrograde trans-
port of nerve-growth factor (NGF).36 In
fact, NGF transport in Ts65Dn mice
was decreased to 10–15% of the wild-
type control.37 Crossing Ts65Dn mice
to an App KO strain, NGF transport
was markedly increased and the BFCN
degeneration phenotype was rescued.37

This indicates that App played a con-
spicuous role in axonal transportation
and BFCN degeneration.37 App is not

triplicated in Ts1Cje mice (see Fig. 2)
but axonal transportation in this mutant
can only reach ~70% of the wild-type
control,37 suggesting another gene(s), in
addition to App, located within the
Sod1-Zfp295 region also affects NGF
transport.

From the aforementioned analyses of
cardiovascular, hematopoietic and neuro-
logical phenotypes, it is apparent that
mouse mutants play a pivotal role in DS
research. At this point, as in the cases of
human segmental trisomies, the number
of desirable mouse mutants for genetic
analysis of DS is also limited (see
Fig. 2). But unlike the human cases, the
number of new mouse mutants can
be increased significantly by chromosome
engineering in research laboratories.
Therefore, the mouse can serve as an
effective platform for a comprehensive
genetic dissection of DS. On the other
hand, because of species-specific differ-
ences, it would be interesting to replace
mouse orthologous regions using human
21 genomic fragments. A BAC-based
replacement of a mouse genomic segment

with the equivalent human orthologous
region has been reported.39 Cre/loxP-
mediated recombination could also be
used to transfer a megabase Hsa21 geno-
mic fragment to a mouse chromosome40

although such a targeted transfer have not
yet led to any desired mutant mice. If
successful, mouse models carrying three
copies of human chromosomal segments
could be developed using this approach,
and alternative strategy of genetic dissec-
tion of DS could be pursued by engineer-
ing and analyzing mouse mutants carrying
defined segmental trisomies of Hsa21.
Upon the identification of minimal critical
regions, segmental trisomic mice could
be compounded with null alleles of the
genes located within the region in order
to search for the dosage-sensitive genes
associated with disease phenotypes. The
ongoing international mouse gene knock-
out projects would provide the essential
null alleles for this effort. Therefore,
chromosome engineering may turn out
to be one of the most critical technological
innovations that propels contemporary
DS research and hastens the pace of

Figure 2. Genetic analysis of DS in mice. Endpoints of the trisomic regions are shown. Mouse models: 1, Tc1; 2, Dp(10)1Yey/+;Dp(16)1Yey/+;Dp(17)1Yey/+;
3, Dp(16)1Yey/+; 4, Dp(17)1Yey/+; 5, Dp(10)1Yey/+; 6, Ts1Yah; 7, Ts65Dn; 8, Ts1Cje; 9, Dp(16)2Yey/+; 10, Ts1Rhr. –, data not available.

10 Bioengineered Bugs Volume 3 Issue 1



unraveling the underlying mysteries of
this complex disorder, which in turn
should speed up development of novel
therapeutic interventions for the major
clinical presentations of the disorder.
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